Novel Aromatic Polymers for Immobilizing β -D-Glucosidase and Their Possible Application to Cellulolysis

J. M. SARKAR AND R. G. BURNS

Biological Laboratory, University of Kent, Canterbury, Kent, UK

ABSTRACT

We have synthesized, by enzymic and chemical means, a variety of novel polyaromatic–enzyme complexes that are extremely stable and show promise in the conversion of cellulose to glucose. Thus we have prepared a number of homo- and heteropolymeric supports (involving L-tyrosine, pyrogallol, resorcinol, phloroglucinol, orcinol, catechol, protocatechuic acid, and various hydroxybenzoic acids) and discovered that, for example, a resorcinol-β-D-glucosidase copolymer has high stability combined with low K_m (10.5 mM vs commercial soluble β-D-glucosidase 9.3 mM) and high $V_{\rm max}$ values (104 μmol pNP mg⁻¹h⁻¹ vs 85 μmol pNP mg⁻¹h⁻¹). These properties are enhanced when the copolymer is complexed with bentonite clay. The kinetic constants of the resorcinol–β-D-glucosidase copolymer–bentonite complex were $K_m = 9.6$ mM and $V_{\rm max} = 73.5$ μmol pNP mg⁻¹h⁻¹. Stability has been assessed against proteolysis, organic solvents, elevated temperatures, storage, and incorporation into fresh soil.

A cellulase preparation from *Trichoderma viride* has also been copolymerized with a variety of phenolic macromolecules and displays varying degrees of stability and activity against carboxymethyl cellulose.

The resorcinol β -D-glucosidase–copolymer was immobilized on a PM10 ultrafiltration membrane ($K_m = 16.8 \text{ mM}$; $V_{\text{max}} = 42.4 \text{ }\mu\text{mol }\rho\text{NP mg}^{-1}\text{h}^{-1}$) and showed enhanced thermostability, a broader pH range for maximal activity, and could be reused without loss of activity. An ultrafiltration cell, containing the membrane-immobilized resorcinol– β -D-glucosida se copolymer, can be operated as a continuous reactor with substrate flow rates from 0.1 to 0.7 mL min⁻¹ without decrease in product formation.